机器学习与工业智能未来趋势如何?中外顶尖学者聚深探讨

读特见习记者 何亚南 文/图
2018-08-03 18:19
摘要

日前,香港中文大学(深圳)携手清华-伯克利深圳学院(TBSI),共同举办“机器学习与工业智能国际论坛”,邀请到中外各国的顶尖学者汇聚南山智园,就现实世界工业挑战中人工智能的未来、工业4.0和智能制造的基础展开了深入探讨。

日前,香港中文大学(深圳)携手清华-伯克利深圳学院(TBSI),共同举办“机器学习与工业智能国际论坛”,邀请到中外顶尖学者汇聚南山智园,就现实世界工业挑战中人工智能的未来、工业4.0和智能制造的基础展开了深入探讨。

本次论坛吸引了来自华为、大疆、腾讯、上海证券等知名企业界人士的报名,以及来自世界知名高校清华大学、香港中文大学、斯坦福大学、浙江大学、厦门大学等师生的热情参与。香港中文大学(深圳)教授、国际电机及电子工程师学会院士、国际自动控制联合会院士秦泗钊,清华-伯克利深圳学院共同院长张林出席开幕式。

2017年,谷歌DeepMind团队研发的深度学习程序AlphaGo连胜人类围棋冠军,引发了新一轮狂热的AI浪潮。近年来,依靠全球网络、大数据和云计算的协同能力,人工智能的技术和发展模式正在发生深刻而本质性的变化。从智能手机系统、无人驾驶汽车,再到各种智能穿戴设备,人工智能似乎在一夜间广泛渗透到人们的日常生活中。

什么是人工智能?人工智能的研究现状如何?未来的发展趋势又会怎样?

人工智能:高度复合的交叉学科

早在1950年,计算机科学的先驱阿兰·图灵即提出,“如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么称这台机器具有智能”,这便是著名的“图灵测试”。其后,1956年夏,美国达特茅斯会议上,人工智能的概念被正式提出并确立。在半个多世纪的研究中,控制论、信息论、语言学、心理学、神经生理学、数学等多学科领域的交叉融合极大丰富了人工智能的内涵,并使其在跨学科的研究与应用中不断发展变化。

秦泗钊教授认为,人工智能是一个包罗万象的名词,对传统的学科领域都有渗透与带动,这种渗透与带动也随着人工智能的发展有不同的领先点。以前是利用规则与知识驱动,现在采用数据驱动。从学科角度来讲,人工智能不仅仅是计算机的一个分支,从对社会、对工业的影响来说,人工智能必须要跨学科,就像一把伞,覆盖了好多学科,并最终形成一种学科融合。

“我们在学校做学问的这群人,实际上只能在人工智能领域完成一部分事情,这一部分对我而言就是机器学习。”来自麻省理工学院的郑立中教授认为,人工智能是一门极其复杂的交叉学科,需要来自多方的互动,除了来自工业自动化方面的专家参与之外,还可以邀请市场、计算机人才共同参与。

工业4.0时代:人工智能面临的现实挑战

人工智能在工业领域的应用,为新时代产业结构升级和技术革新提供了机遇。重塑产业链形态与价值创造的方式,通过增强网络智能设计制造与服务,提高生产率。

在谈到本次论坛举办的初衷时,秦泗钊教授讲到了人工智能在工业制造领域的应用,“现在这批人工智能,包括大数据,对以下几个方面是很有效的。一是从事与人打交道的活动,例如语音、翻译、图像、认知等等,这一块做得挺好;另外一个领域是‘商务智能’(Business Intelligence),例如广告投放与定向广告,人类行为被深度解析,效果比随便发广告要好得多。现在,我们更关心的问题其实是‘工业智能’(Industrial Intelligence),这涉及到新一代工业革命(工业4.0),人工智能在机器学习等领域的成果如何转化到工业制造领域,产生更大的效果,这也是本次论坛主要的目的。”

“我认为这十几年甚至三十年来,机器学习是在冲破传统的框架,不论是主观的还是客观的。计算机领域搞机器学习的人,并不是全搞清楚传统的已有的东西再去做新东西,这样做可以将传统思路认为不可能做的事情变为可能,达成一种颠覆,这是一个非常大的特点。从事机器学习的人,逐渐会摸到传统领域的认为不可以做的事情,也有地方会有所突破,这是一个互动的过程。”秦泗钊教授谈到。

未来之路:更规范、更多元

微软CEO纳德拉在谈到人工智能的发展前景时提到,如果人工智能的发展历程总长是100万公里,我们现在才刚刚走了几公里。在时下各种展会及新产品推出的热闹喧嚣背后,研究人员如何就其现状进行理性分析、审慎判断,并回归基础性研发,带动产业走向良性发展,是一个值得深思的命题。

就目前人工智能的市场应用中所存在的问题,郑立中教授表示,任何一个领域在发展初期一定会存在不同程度的乱象。研究人员应该在乱象落幕后用理论将其整理归纳,形成一套成熟的方法论,进而选择正确的发展方向,支持一个可持续发展的态势。

“深度学习的理论不太可能再带来一个像AlphaGo这样,全民热爱的东西,我们要对此有所预期。我们应该鼓励、集合各种力量,带动整个领域向一个更加规范化的方向发展。”郑立中教授说。

“在产品和科研的具体问题里,我们从理论到实现结果是非常受限制的,我现在打算把深度学习用于生物、机械、工业自动化等领域,然而限制很多,因为需要应用到该领域的特定知识。在我们拓展(深度学习)的时候,面临着很多新的挑战,要进一步扩大应用领域,使它变为一个非计算机科学的全领域,在其他各个研究方向大展拳脚。”

编辑 陈湛杭

(作者:读特见习记者 何亚南 文/图)
免责声明
未经许可或明确书面授权,任何人不得复制、转载、摘编、修改、链接读特客户端内容
推荐阅读

读特热榜

IN视频

鹏友圈

首页