南科大学者《自然》发文,利用冷冻电镜推进NSD家族组蛋白研究
深圳特区报记者 韩文嘉 通讯员 吴芳
2020-12-24 17:14

2020年12月24日,南方科技大学生物系高级研究学者李婉秋携手北京师范大学教授王占新团队、纪念斯隆-凯瑟琳癌症研究中心教授Dinshaw J. Patel团队和斯坦福大学教授Or Gozani团队在《自然》杂志在线发表了题为“Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases(NSD家族甲基转移酶甲基化核小体H3K36的分子机制)”的研究论文。该研究首次揭示了NSD家族组蛋白赖氨酸甲基转移酶修饰核小体的分子机理,并探讨了该家族蛋白突变与人类癌症的关系。            

这一项目所有冷冻电镜数据采集、处理均在南方科技大学冷冻电镜中心进行,南方科技大学冷冻电镜中心为本项目顺利推进提供了坚实保障。李婉秋、北京师范大学已毕业博士生田伟、斯坦福大学博士后袁刚和北京师范大学已毕业博士生邓谱涓为本论文共同第一作者,王占新、Dinshaw J. Patel和Or Gozani为本论文的共同通讯作者。南方科技大学为第一作者单位。            

该研究首次报导了NSD2和NSD3蛋白分别与核小体复合物的高分辨率冷冻电镜结构,揭示了NSD家族蛋白特异性识别和甲基化组蛋白H3K36的分子机制,阐明了NSD蛋白中重要的致癌突变位点活性增强的分子激活机理。为针对NSD家族蛋白异常过量表达和突变等引起的多发性骨髓瘤、急性淋巴细胞白血病等靶向治疗研究奠定了分子基础。            

基因组DNA缠绕在组蛋白八聚体(H2A, H2B, H3和 H4)上形成核小体,核小体再进一步逐级折叠压缩组装成染色质。组蛋白赖氨酸甲基转移酶通过催化转移甲基基团到组蛋白H3和H4末端特定的赖氨酸侧链上,形成组蛋白甲基化标记,从而影响基因转录、DNA复制和DNA修复等过程,对维持染色质稳定和基因表达调控具有重要作用。组蛋白甲基转移酶已被报道和多种癌症、疾病等发生密切相关。            

NSD家族蛋白是组蛋白H3第36位赖氨酸(H3K36)特异的甲基转移酶,有NSD1、NSD2 (MMSET/WHSC1) 和NSD3 (WHSC1L1) 三个成员。NSD家族蛋白异常表达或者突变与多种癌症发生密切相关,被认为是潜在的癌症靶向药物治疗靶点。已知NSD甲基转移酶表现出一种自抑制状态,其通过与核小体结合而解除自抑制,使组蛋白H3K36位点可以被二甲基化。然而,这一过程的分子机制尚不清楚。            

该研究利用冷冻电镜单颗粒技术,解析了NSD3、NSD3(E1181K/T1232A)致癌突变体和NSD2(E1099K/T1150A)致癌突变体分别与核小体结合复合物冷冻电镜结构。研究人员发现,NSD2/NSD3与核小体的结合会导致核小体出口处连接区域 (linker region) DNA打开,从而使NSD2/NSD3的催化结构域插入到打开的DNA片段与组蛋白八聚体之间。NSD2/NSD3蛋白多个带正电氨基酸与核小体SHL -7、SHL 0位置处DNA磷酸骨架相互作用,将NSD2/NSD3稳定在核小体上。与此同时,NSD2/NSD3与组蛋白H3的N端α螺旋、H2A的C末端有多个相互作用位点。研究人员根据NSD3与核小体复合物结构信息设计了一系列突变体,发现NSD3蛋白的催化活性均不同程度降低。            

值得一提的是,通过对比野生型NSD3核小体复合物结构与NSD2(E1099K/T1150A)与核小体的复合物、NSD3(E1181K/T1232A)与核小体复合物结构,研究人员发现,NSD2中著名的致癌突变位点E1099K,即带负电氨基酸E1099突变成带正电氨基酸K1099后,NSD2与核小体之间的静电作用增强,从而导致了NSD2活性增强。而另一个致癌突变位点 NSD3(T1232A) [对应的NSD2(T1150A)],当苏氨酸T突变成丙氨酸A,导致H3尾部向A1232位点靠近,形成了一对新的氢键,使H3K36更容易进入催化口袋,从而导致酶活性增强。这些致癌突变不仅增强了体外催化活性,而且促进了癌细胞增殖以及异种移植瘤生长。   

见习编辑 王子烨         

(作者:深圳特区报记者 韩文嘉 通讯员 吴芳)
免责声明
未经许可或明确书面授权,任何人不得复制、转载、摘编、修改、链接读特客户端内容
推荐阅读
读特热榜
IN视频
鹏友圈

首页